Math 610 Assignment 2


  1. Let i=(1,2,1){\bf i} = (1,2,1). Check that T1T2F1=F2T_1 T_2 F_1 = F_2 using the defining relations of Uq(sl3)U_q(\mathfrak{sl}_3) as in Tingley.
  2. Fix w0=s1s2s1w_0 = s_1 s_2 s_1 in W=S3W = S_3 and use WW-invariance of the bilinear form on the dual of the Cartan subalgebra t\mathfrak{t} of sl3\mathfrak{sl}_3 to check that α1,w0ω2=1\langle \alpha_1 , w_0 \omega_2^\vee\rangle = -1. Here αi\alpha_i denotes a simple root and ωi\omega_i^\vee denotes its coroot.
  3. Let P=Hom(T,C×)P = \text{Hom}(T,\mathbb C^\times) and P=Hom(C×,T)P^\vee = \text{Hom}(\mathbb C^\times, T) where TGT\le G denotes the subgroup of diagonal matrices. Describe P,PP, P^\vee in each case below, and state any generalizations you foresee. All homs are algebraic homs, and you may use as definition that Hom(C×,C×)=Hom(C[z,z1],C[z,z1])={zzn:nZ}\text{Hom}(\mathbb C^\times,\mathbb C^\times) = \text{Hom}(\mathbb C[z,z^{-1}],\mathbb C[z,z^{-1}])= \{z\mapsto z^n : n\in \mathbb Z \}. In particular, an algebraic hom is determined by its derivative at the identity (1C×1 \in \mathbb C^\times). This allows us to identify PP in t=(TeT)=Hom(TeT,C)=TeHom(T,C×)\mathfrak t^\ast = (T_e T)^\ast = \text{Hom}(T_eT,\mathbb C)=T_e\text{Hom}(T,\mathbb C^\times) for example.
    • G=GL2G = \text{GL}_2
    • G=GL3G = \text{GL}_3
    • G=PGL2G = \text{PGL}_2 where PGLn+1:=(GLn+1{0})/C×\text{PGL}_{n+1} := \left(\text{GL}_{n+1} \setminus \{0\}\right)/{\mathbb C}^\times with λC×\lambda\in\mathbb C^\times acting on gGLn+1g\in\text{GL}_{n+1} by scaling.
    • G=PGL3G = \text{PGL}_3
    • G=SL2G = \text{SL}_2 where SLn+1:={gGLn+1:detg=1}\text{SL}_{n+1} := \left\{g\in\text{GL}_{n+1}: \det g = 1\right\}
    • G=SL3G = \text{SL}_3
  4. For each of the above, describe the root basis (resp. coroot basis) of PP (resp. PP^\vee) in t\mathfrak t^\ast (resp. t\mathfrak t). (Start by recalling the definitions-how are co/roots defined?)
  5. Repeat the last question, with "root" replaced by "weight". (Start by recalling the definitions-how are co/weights defined?)
  6. Let Γ={wωi:wW,iI}\Gamma = \{w\omega_i^\vee : w\in W, i\in I\}. Recall that a BZ datum M=(Mγ)ΓM = (M_\gamma)_\Gamma of weight (λ,μ)(\lambda,\mu) is a Γ\Gamma-tuple of integers satisfying (i) the edge inequalities, (ii) the tropical Plucker relations, and (iii) w0ωi,λ=Mw0ωi\langle w_0\omega_i^\vee,\lambda\rangle = M_{w_0\omega_i^\vee} and ωi,μ=Mωi\langle \omega_i^\vee,\mu\rangle = M_{\omega_i^\vee} for all iIi\in I. The associated MV polytope P(M)={νt:ν,γMγ}P(M) = \{\nu \in \mathfrak{t}^\ast : \langle \nu , \gamma\rangle \ge M_\gamma \} is a convex polytope (with lowest weight μ\mu and highest weight λ\lambda). Given wWw\in W, let μwP\mu_w\in P be such that μw,wωi=Mwωi\langle \mu_w , w\omega_i^\vee\rangle = M_{w\omega_i}. Show that P(M)P(M) is the convex hull of {μw:wW}\{\mu_w : w\in W\}.
  7. Let G=SL3G = \text{SL}_3.
    • Find the possible P(M)P(M) when MM is a BZ datum of weight (α1,0)(\alpha_1,0).
    • Find the possible P(M)P(M) when MM is a BZ datum of weight (α1+α2,α1)(\alpha_1 + \alpha_2, \alpha_1).
    • Describe the possible P(M)P(M) for a general BZ datum MM.
  8. Prove that y[w0yT]+y\mapsto [w_0 y^T]_+ is a birational automorphism of UU with inverse xw01[xw01]+Tw0x\mapsto w_0^{-1}[xw_0^{-1}]_+^Tw_0.
  9. Let QQ be the quiver with just one vertex 11 and arrows a,ba,b. Set A=CQ/JA = \mathbb C Q/ J where JJ is the ideal generated by {ab,ba}\{ab,ba\}. Describe the modules VikV_{\bf i}^k defined in class for i=(i4,,i1)=(1,1,1,1){\bf i} = (i_4,\dots,i_1) = (1,1,1,1). See section 3.4 of Generic bases for cluster algebras and the chamber ansatz by Geiss, Leclerc, Schroer for a reminder.

References